Evaluation of Plastic Scintillator Detector for Small Field Stereotactic Patient-Specific Quality Assurance

Y Qin*, S Gardner, Y Huang, J Kim, N Wen, I Chetty, Henry Ford Health System, Detroit, MI

Presentations

SU-G-TeP2-8 (Sunday, July 31, 2016) 4:30 PM - 5:00 PM Room: ePoster Theater

Purpose:
To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance using flattening-filter-free (FFF) beams.

Methods:
A total of ten spherical targets (volume range: [0.03cc - 2cc]) were planned using Dynamic Conformal Arc (DCA-10 plans) and Volumetric Modulated Arc Therapy (VMAT-10 plans) techniques in Eclipse (AAA v.11, 1mm dose calculation grid size). Additionally, 15 previously-treated cranial and spine SRS plans were evaluated (6 DCA, 9 VMAT, volume range: [0.04cc - 119.02cc]). All measurements were acquired using Varian Edge equipped with HDMLC. Three detectors were used: PinPoint ion chamber (PTW; active volume 0.015cc), Exradin W1 PSD (Standard Imaging; active volume 0.002cc), and Gafchromic EBT3 film (Ashland). PinPoint and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging). Films were placed at isocenter in solid water. Calibration films were delivered for absolute dose analysis.

Results:
For large spherical targets (>1.5cc) with DCA, all detectors agreed within 1% of AAA calculations. As target volume decreased, PSD measured higher doses than AAA (maximum difference: 3.3% at 0.03cc target), while PinPoint chamber measured lower doses (maximum difference: -3.8% at 0.03cc target). Inter-detector differences between pinpoint and PSD increased with decreasing target size; differences >5% were observed for targets <0.09cc. Similar trends for inter-detector behavior were observed for clinical plans. For target sizes <0.08cc, PSD measured >5% higher dose than PinPoint chamber (maximum difference: 9.25% at 0.04cc target). Film demonstrated agreement of -0.19±1.47% with PSD for all spherical targets, and agreement within -0.98±2.25% for all 15 clinical targets. Unlike DCA, VMAT plans did not show improved AAA-to-detector agreements for large targets.

Conclusion:
For all targets, the PSD measurements agreed with film within 1.0%, on average. For small volume targets (<0.10cc), PSD agreed with film but measured significantly higher doses (>5%) compared with the pin point ion chamber. The plastic scintillator detector appears to be suitable for accurate measurements of small SRS targets.